
N. PURGE SYSTEM SPECIFICATION

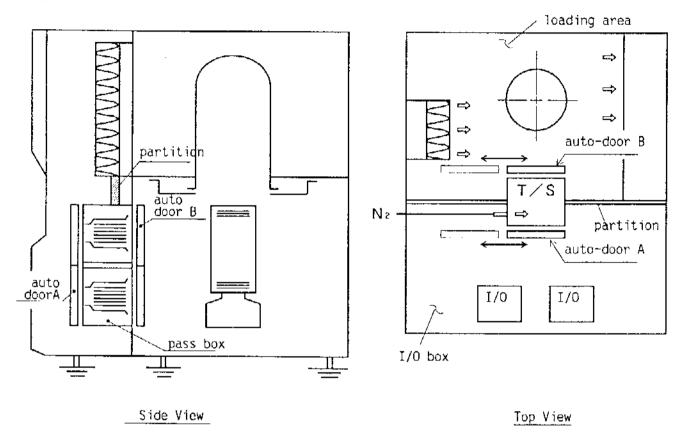
	 · · · · · · · · · · · · · · · · · · ·			
•••••				

	 	· · · · · · · · · · · · · · · · · · ·		

- 1. Scope of application.
 - * These specifications are applied to the N_2 Purge system. and what is not specified in these specifications, it conforms to the main unit specifications.
- 2. Features.
 - * The loading area is enclosed with the N_2 box, which enables to prevent wafers from the natural formation of the oxide film and to conrol the atmosphere.
- 3. Outline of the specification.
 - (1) Furnace unit ----- ALPHA-8S-Z.
 - (2) 0_2 concentration ---- < 30ppm at the lower side of the scavenger.
 - (3) Substitution time ---- 45 minutes or less.
 - (4) N_2 flow method ----- 1) laminerflow.
 - 2) N_2 flow rate switch function(large or small)
 - (5) N_2 consumption ----- at initial substitution 620 ℓ /min at the maximum.
 - (6) Safety measures ----- Each door of the furnace unit shall have a lock. (Monitors the O_2 concentration by an O_2 concentration sensor)

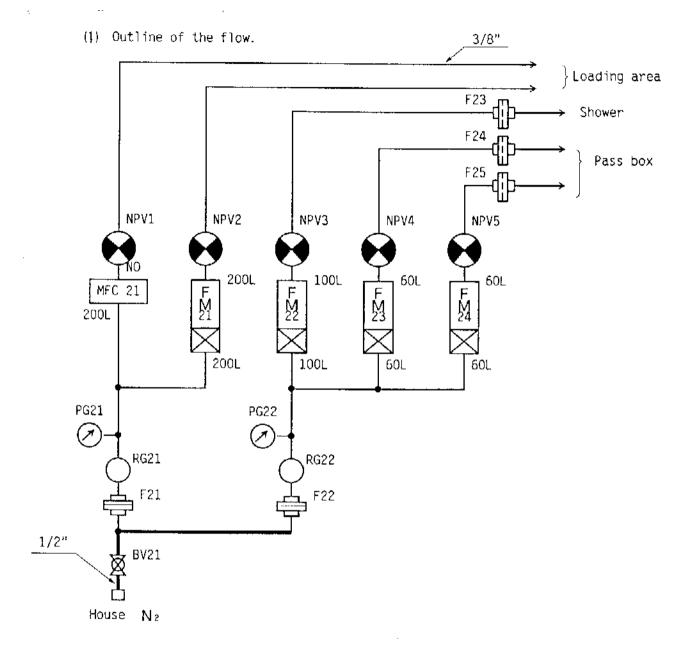
- 4. Specifications of each unit.
 - (1) Furnace unit.
 - *"The furnace unit is so structured as to achieve the higher gastibhtness and constant temperature, and stable laminerflow at the loading area.

1) Outline of structure



(2) Basic specifications:

- 1) The loading area shall have a high gastightness, and reduce N_2 leak to the maintenance room is allowed.
- 2) The N_2 gas flow shall be the laminar flow type to keep the cleanliness. The absolute filter of ULPA or equivalent grade is used for developing the laminarflow.
- 3) For the N_2 gas circulation method a radiator shall be provided to cool down the gas temperature against the rising temperature of the atmosphere as a result of heat leakage by opening the furnace end or by loading/unloading the boat.


- 4) The lower scavenger of the furnace opening shall have the N_2 shower piping, which is used for removing the oxgen among the wafers at load/unload.
- 5) The rear and side doors shall have a lock to prevent the personal injury. The door is opened/closed automatically by the θ_2 concentration sensor, and enabled to open only at the θ_2 atmosphere of 18.5%.

- 5. Auto-mechanism.
 - \star By using the wafer transfer stage as a reserved chamber structured as a pass box, it is enabled to keep to the loading area atmosphere and reduce the N₂ consumption.
 - (1) Outline of the structure.

- (2) Basic Specifications.
 - 1) The pass box shall have a high gastightness and no N_2 leak to the loading area or I/O box is allowed.
 - The auto-door A an B shall be single-door type, enabled to be driven independently.
 - 3) The auto-door is opened/closed by the air cylinder.
 - 4) The contact surfaces of the auto-doors A and B with the pass box shall be sealed by the packing made by Viton.
 - 5) The auto-door A and B shall be provided with the lock mechanisms used at closing. The lock shall be an air-cylinder method.
 - 6) The pass box shall have the N_2 gas inlet port.

- 6. Gas system.
 - $\ensuremath{\boldsymbol{\$}}$ The systems shall be supplied for loading area, pass box, and N_2 box.

(2) Basic supecification

- 1) Piping material is Electrical polished(EP pipe).
- 2) A label identifying the gas name and flow direction shall be placed on each components and pipings.
- 3) Pipes are automatically welded.
- 4) The pipes shall be laid by bending. (below 90°)

(3) N₂ Purge system interlock list.

V Na.	NORMAL	GAS/ PURPOSE	CONDITIONS
NPV1	NC	N ₂	* Close when S26(PBF2, PBB2, CLOSE)OFF or S29(PBF1, PBB1, CLOSE)OFF. * Able to open when S26(PBF2, PBB2, CLOSE)ON and S29(PBF1, PBB1, CLOSE)ON.
NPV2	NC	N ₂	* Close when S26(PBF2, PBB2, CLOSE)OFF or S29(PBF1, PBB1, CLOSE)OFF. * Able to open when S26(PBF2, PBB2, CLOSE)ON and S29(PBF1, PBB1, CLOSE)ON.
NPV4	NC	Nz PASS BOX 1	* Close when S29(PBF1, PBB1, CLOSE)OFF or S30(PB,V1)OFF. * Open when S29(PBF1, PBB1, CLOSE)ON and S30(PB,V1)ON.
NPV5	NC	N₂ PASS BOX 2	* Close when S26(PBF2, PBB2, CLOSE)OFF or S27(PB,V2)OFF. * Open when S26(PBF2, PBB2, CLOSE)ON and S27(PB,V2)ON.
LOAD V	NC	N₂ BOX	* ON when NPV1(OPEN) or NPV2(OPEN) * OFF when NPV1(CLOSE) and NPV2(CLOSE)

- 7. Control mechanism.
 - \star An automatic control is provided using the recipes for auto-door, auto-damper, and θ_2 concentration controls.
 - (1) Outline of the specifications
 - 1) Controled items:
 - A) Exhaust damper
 - B) N₂ purge gas system
 - C) auto-door A and B
 - D) O₂ concentration
 - E) interlock

(2) Basic Specification

- As a rule, the loading area shall not accommodate the motor driver or printed circuitbord, etc.
- The cables, etc. laid insid the loading area shall be high temperature resistant type.
- 3) The interlock system software controls the following.
- 4) Control the auto-doors.
 - A) Each door is enabled to be opened/closed independently.
 - B) When the auto-door B is opened, the auto-door A is desabled to open.
 - C) When the auto-door B is closed, the wafer transfer unit is desabled to operate.
 - D) The carrier is replaced in a unit of 2-carrier.
 - E) The auto-door B shall be opened on condition that the θ_2 concentration is sensed and input.(using condition)
 - F) When the auto-door A is closed, the carrier transfer is disabled to operate the carrier IN motion.